ENVIRONMENTAL PRODUCT DECLARATION

ISO 14025 ISO 21930 EN 15804

epd-norge.no

Owner of the declaration	Saint-Gobain Byggevarer as
Program holder	The Norwegian EPD Foundation
Declaration number	NEPD00291E
Issue date	15.12.2014
Valid to	15.12.2019

weber.base 261 Fiberpuss, dry powder render mortar

Product

Saint-Gobain Byggevarer as

General information

Product:

weber.base 261 Fiberpuss, dry powder render mortar

Program holder:

The Norwegian EPD Foundation P.O.Box 5250 Majorstuen 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number: NEPD00291E

This declaration is based on Product Category Rules:

EN 15804:2012+A1:2013 serve as core PCR Req. on the EPD for Mineral factory-made mortar

Declared unit:

1 kg weber.base 261 Fiberpuss, dry powder render mortar

Declared unit with option:

A1,A2,A3,A4

Functional unit:

The EPD has been worked out by:

The declaration has been developed using EPDGen-version 1.0, Approval: NEPDT02 Company specific data are collected and registry by: Line Holaker Company specific data are audited by:

Stian Gravnås

Verification:

Independent verification of data, other environmental information and EPD has been carried out in accordance with ISO14025, 8.1.3 and 8.1.4

externally

mus

Senior Researcher Anne Rønning (Independent verifier approved by EPD-Norway)

Á

Declared unit:

1 kg weber.base 261 Fiberpuss, dry powder render mortar

Key environmental indicators	Unit	Cradle to gate A1 - A3	Transport A4
Global warming	kg CO2 eqv	0,2418	0,00369
Energy use	MJ	3,776531	0,0482830
Dangerous substances		*	*

*The product contains no substances from the REACH Candidate list or the Norwegian priority list

Owner of the declaration:

Saint-Gobain Byggevarer as Contact person: Line Holaker Phone: +47 22 88 77 00 e-mail: info(at)weber-norge.no

Manufacturer:

Saint-Gobain Byggevarer as

Place of production:

Weber Leca Trondheim, Norway

Management system:

ISO 9001, ISO 14001

Org. No:

940 198 178

Issue date: 15.12.2014

Valid to: 15.12.2019

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Year of study:

2014

Approved:

Dagfinn Malnes Managing Director of EPD-Norway

Product

Product description:

weber.base 261 Fiberpuss is a fiber reinforced dry mortar based on cement and lime. When mixed with water, it is a ready-to-use render for indoor and outdoor use. weber.base 261 Fiberpuss is used as a render on mineral surfaces where high adhesion and good durability is required. It is recommended on all exterior Leca® block walls above ground and on several Weber facade systems. weber.base 261 Fiberpuss is sprayable and frost resistant. To achieve a rainproof surface, weber.base 261 Fiberpuss needs to be coated with paint or final render. weber.base 261 Fiberpuss is always used in combination with a reinforcement mesh.

Technical data:

Mortar category: CS III (EN 998-1). For more information see: www.weber-norge.no

Reference service life:

As for the building

LCA: Calculation rules

Declared unit:

1 kg weber.base 261 Fiberpuss, dry powder render mortar

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included.

Product specification:

The composition of the product is described in the following table:

Materials	Percent
Cement	12,68
Aggregate	67,22
Filler	12,68
Packaging	2,34
Chemicals	4,29
Reinforcement	0,78

Market:

Norway

Allocation:

The allocation is made in accordance with provisions in EN 15804. Incoming energy and water, and in-house waste from the production, is allocated equally among all products through mass allocation. Effects of primary production of recycled materials are allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Materials	Data quality	Source	Year
Cement	EPD	NEPD00023N	2013
Filler	Supplier data	Østfoldforskning	2013
Filler	Database	Østfoldforskning	2013
Aggregate	Database	Østfoldforskning	2012
Chemicals			
Chemicals	Database	Ecolnvent 3	2014
Reinforcement	Database	Ecolnvent 3	2014
Chemicals	Database	Ecolnvent 3	2014
Packaging			
Packaging	European Average	APME	
Packaging			

System boundary:

All processes from raw material extraction to product from the factory gate are included in the analysis (A1-A3). In addition, transportation to a central warehouse placed in accordance with guidelines issued by the EPD Norway (A4) is included.

FlowChart:

LCA: Scenarios and additional technical information

The following infomation describe the scenarios in the different modules of the EPD.

Transport from production site to user (A4)									
Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)			
Truck	75 %	Lorry to market	50	0,015594	l/tkm	0,78			
Railway									
Boat			-						
Other									

Installation in the building (A5)

Unit	Value
kg	0
m3	0
kWh	0
MJ	0
kg	0
kg	0
kg	0
	kg m 3 kWh MJ kg kg

Label

Maintenance (B2)/Repair (B3)

	Unit	Value
Maintenance cycle		0
Auxiliary	kg	0
Other resources	kg	0
Water consumption	M3	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Material loss	kg	0

Use (B1):

•	Unit	Value
No effect	0	0

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	0
Collected as mixed construction waste	kg	0
Reuse	kg	0
Recycling	kg	0
Energy recovery	kg	0
To landfill	kg	0

Transport to waste processing (C2)	1					
Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	0 %		0	0	l/tkm	0
Railway						
Boat						
Other						

Benefits and loads beyond the system boundaries (D)

LCA: Results

Product stage		insta	ruction Ilation age		User stage End of life stage						Beyond the system bondaries					
Raw materials	Transport	Manufacturing	Transport	Construction/ Installation stage	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction/ demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4 .	D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impact

Parameter	Unit	A1	A2	A3	A4	A5	C1	C2
GWP	kg CO ₂ -eqv	2,07E-001	1,24E-002	2,24E-002	3,69E-003			
ODP	kg CFC11 -eqv	4,34E-009	0,00E+000	1,65E-009	0,00E+000			
POCP	kg C ₂ H ₄ -eqv	5,44E-004	1,10E-005	2,51E-005	1,00E-005			
AP	kg SO ₂ -eqv	2,13E-004	5,30E-005	5,08E-006	2,00E-006			
EP	kg PO ₄ ³⁻ -eqv	5,15E-005	5,00E-006	2,85E-006	2,00E-006			
ADPM	kg Sb -eqv	5,08E-007	0,00E+000	3,19E-009	0,00E+000			
ADPE	MJ	2,83E+000	1,65E-001	3,37E-001	4,84E-002			

GWP Global warming potential; **ODP** Depletion potential of the stratospheric ozone layer; **POCP** Formation potential of tropospheric photochemical oxidants; **AP** Acidification potential of land and water; **EP** Eutrophication potential; **ADPM** Abiotic depletion potential for non fossil resources; **ADPE** Abiotic depletion potential for fossil resources

Resource use

Parameter	Unit	A1	A2	A3	A4	A5	C1	C2
RPEE	MJ	1,24E-001	2,29E-004	3,02E-004	8,30E-005			
RPEM	MJ	3,08E-001	8,30E-005	2,60E-004	0,00E+000			
TRPE	MJ	4,32E-001	3,11E-004	5,62E-004	8,30E-005			
NRPEE	MJ	2,88E+000	1,65E-001	3,30E-001	4,82E-002			
NRPEM	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
TNRPE	MJ	2,88E+000	1,65E-001	3,30E-001	4,82E-002			
SM	kg	2,34E-003	0,00E+000	0,00E+000	0,00E+000			
RSF	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
NRSF	MJ	2,77E-001	0,00E+000	0,00E+000	0,00E+000			
W	m ³	2,19E-001	1,59E-003	5,53E-003	4,31E-004			

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TRPE Total use of renewable primary energy resources used as energy carrier; NRPEM Non renewable primary energy resources used as materials; TRPE Total use of virgin, non-renewable resources with energy content; SM Use of secondary materials; RSF Use of renewable secondary fuels; WISE of non renewable secondary fuels; WISE of net fresh water

End of life - Waste

Parameter	Unit	A1	A2	A3	A4	A5	C1	C2
HVV	kg	4,18E-005	0,00E+000	2,82E-007	0,00E+000			
NHW	kg	2,81E-002	3,70E-005	2,25E-003	9,00E-006			
RW	kg	0,00E+000	0,00E+000	0,00E+000	0,00E+000			

HW Hazardous waste disposed; NHW Non hazardous waste disposed, RW Radioactive waste disposed

End of life - Output flow

Parameter	Unit	A1	A2	A3	A4	A5	C1	C2
CR	kg	0,00E+000	0,00E+000	1,40E-002	0,00E+000			
MR	kg	4,92E-005	0,00E+000	1,00E-003	0,00E+000			
MER	kg	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
EEE	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
ETE	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal								

energy

Additional Norwegian requirements

Electricity

The following data from ecoinvent v3 (June 2012) for Norwegian production mix included import, low voltage is used; Energy/Electricity country mix/Low voltage/Market: Electricity, low voltage {NO}| market for | Alloc Def, U. Production of transmission lines, in addition to direct emissions and loss in grid are included. Characterisation factors stated in EN 15804:2012+A1:2013 are used. This gives following greenhouse gas emissions: 24 g CO2-eqv/kWh

Hazardous substances

None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (checked 11.12.2014) substances on the Norwegian Priority list (checked 11.12.2014) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations

Indoor air

The product meets the requirements for low pollutant (M1) by EN 15251: 2007 Appendix E. The product has no impact on the indoor environment.

Bibliography

NS-EN ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures

NS-EN ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines NS-EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products

Product Category Rules for Environmental Product Declarations: Institut Bauen und Umwelt e.V. (IBU): Requirements on the EPD for Mineral factory-made mortar. Vold, M and Edvardsen, T, 2013: Weber EPD Generator Background information, Østfoldforskning AS, Fredrikstad, Norge, Nov 2013

epd-norge.no	Program holder and publisher The Norwegian EPD Foundation	Phone:	+47 23 08 80 00
The Norwegian EPD Foundation	P.O.Box 5250 Majorstuen	email:	post@epd-norge.no
®	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 22 88 77 00
weber	Saint-Gobain Byggevarer as	Fax:	+47 22 64 54 54
SAINT-GOBAIN	P.O. Box 216 Alnabru	email:	info(at)weber-norge.no
	0614 Oslo, Norway	web:	www.weber-norge.no
	Author of the Life Cycle Assessment	Phone:	+47 69 35 11 00
O Østfoldforskning	Østfoldforskning AS	Fax:	+47 69 34 24 94
	Stadion 4	email:	post@ostfoldforskning.no
0	1671 Kråkerøy, Norway	web:	www.ostfoldforskning.no